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ABSTRACT
We discuss a reliability model which reflects the dynamic dependency between
system failure and system stress. In particular, a shot-noise process Is used to
model "'residual system stress,'Izwhich In turn drives a doubly stochastic Polsson
process model for system failures. Intuitively, residual stress (or susceptibility to
failure) may vary In a random manner yet be essentially unobservable, while
system failures may be readily detectable and observable. Shot-noise
distributions have a richness and subtlety which suggest untapped potential for
applications. The doubly stochastic Polsson process provides a reasonable
framework for modeling randomly varying rates of occurrence In a broad variety
of settings.

This paper is based in part on research supported by Army Research Office Contract DAAG29-82-
K-0151 and by Office of Naval Research Contract N00014-82-C-0620.
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1. INTRODUCTION

This note Is motivated by the general approach to failure modeling discussed
In Lemolne and Wenocur [4]. Under this approach, system state or wear and tear
Is modeled by an appropriately chosen random process; and the occurrence of
fatal trauma is modeled by a Poisson process whose rate function Is state
dependent. The system Is said to fall when either wear and tear accumulates
beyond an acceptable or safe level or fatal trauma occurs. The rate at which
fatal trauma can occur depends on the state of the system. The approach has

Interesting Implications. It provides revealing Insights Into most of the famous
and frequently used lifetime distributions In reliability theory, Including the
Makeham, Gompertz, Welbull, Rayleigh and Gumbel distributions; In fact, these
classic models are obtained In a unified and straightforward manner. Moreover,
the approach suggests Intuitively appealing and computationally tractable ways
of enhancing these standard failure models and for developing new ones.

In [4] detailed examples of the failure modeling approach are provided using
deterministic models and diffusion process models for system state; use of a shot-
noise model for system state Is discussed In fairly general terms. In the present
note we provide a more detailed discussion of the approach based on using a
shot-noise model for system stress. And we assume that the rate of occurence of
fatal trauma Is proportional to "residual system stress". The time to system
failure Is then the epoch of the first count In a (doubly stochastic) Poisson process
whose rate function Is the shot-noise process.

In using a shot-nolse model for system stress we assume that the system Is
subjected to "shots" or Jolts according to a stochastic point process. A Jolt may
consist of an Internal component malfunctioning or an external "blow" to the
system. Jolts Induce stress on the system when they occur. However, If the

system survives the Jolt It may recover to some extent. For instance, a sudden
and unexpected surge of power In the circuit of a control system may temporarily
Increase the likelihood of system failure, but the overload Itself decays rapidly.
For another example, the mortality rate for persons who have suffered a heart
attack declines with the elapsed time since the trauma. In this case, the heart
actually repairs Itself to a degree.

The remainder of this note Is organized as follows. In the next section,
Section 2, we derive a class of failure distributions using the shot-noise model for
system stress, and discuss properties and structure. Following this, we discuss In
Section 3 the shot-noise process and a related stochastic Integral representation;
this parallels the technical development In [41 based on stochastic differential _
equations and diffusion processes.

0
For background on shot-noise processes and distributions see Rice [5], Cox

and Isham [2], and Bondesson i1. Doubly stochastic Poisson processes are
discussed by Grandell [3]. The gamma process Is discussed In Takacs [6].
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2. SHOT-NOISE AND FAILURE DISTRIBUTIONS

Suppose that a system Is subjected to shots or jolts according to a Poisson
process with deterministic rate function {m(u) , u=0}. Suppose that If a Jolt of
magnitude D occurs at epoch S then at time S+t the contribution of the Jolt
to the system stress is Dh(t), where h is a non-negative function which tends
to zero as t - 00. ( The function h Is also assumed to vanish on (-Co0, 0) and
to be Integrable over finite Intervals.) In other words, shot-induced stress Is
additive and decays with time according to the rate function h. If {S , nit1}
are the epochs of shot occurrences and {Dn , nl} are the magnitudes of the
successive jolts, then the "residual system stress" at time t, say X(t) , is given by

X(t) - Dah(t-S.) (1)
n-1

where we take X(0)-0 With stress cones susceptibility to failure, and It Is
assumed that the occurrence rate of fatal trauma is an Increasing function of
residual system stress. In particular, if T Is the time to system failure, we
assume that P{ TS8+u I T>u , X(u) - x } = 8kx + o(8) for each time
point u and some parameter k, so that kx can be Interpreted as the rate of
occurrence of fatal trauma when the level of system stress Is x. Thus, the failure
time T Is the epoch of the first count In a Poisson process with rate function
{kX(u) , uZ0}, and therefore

t

P{ T > t } f E[ exp[-fkX(u)du] 1. (2)
0

The usual choice for the attenuation or recovery function h In the literature
Is the function h(u)--exp(-&u) If u a 0 and h(u) = 0 if u < 0 , where a is
some positive parameter, that Is, exponential decay. Alternate choices for
modeling the pattern of shot occurrences Include a renewal process, a seml-
Markov process, or a cluster point process. In this note we assume a PoIsson
pattern for shot occurrences. We also take the shot occurrences and Jolt
magnitudes to be Independent of one another, and the successive Jolt magnitudes
to be Independent and distributed as a random variable D which Is not
Identically 0 and has a proper distribution.

We now compute the right side of equation (2) and related quantities, discuss

properties of the resulting formulas, and then look at some examples.

To begin, let N(t) be the number of shot occurrences up to time t,

t

M(t) = fw(u)du (3)
0

and
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tt

Y(t) = fkX(u)du. (4)
0

We assume that E{N(t)} = M(t) is finite for each t, from which It follows
that Y(t) Is finite with probability one. Put

H(t) = fh(u)du. (5)
0

If N(t) - n, then
n

Y(t)- XkDjH(t-Sj) (8)

and the shot epochs S1, ... ,S are independent and distributed as a random
variable U with density m(u)/M(t) for 0 S u S t. Thus, If L Is the Laplace
transform of the distribution of D , then for s 0

E{ exp[-sY(t)] IN(t)=n } = (E{ exp[-skDH(t-U)] 1) (7)

S(kH(t-U))[m(u)fM(t)du

*Uncondltlonlng on the value of N(t) , we find that

t
E{ exp[-sY(t)]} = exp[-M(t)]exp[fL(skH(u))m(t-u)du]. (8)

0

Putting s=1 in equation (8) gives

t

P{ T>t I f exp[-M(t)] exp[fL(kH(u))m(t-u)du]. (9)
0

If M(t) -. 00 as t -. 00 then equation (9) defines a proper probability
distribution concentrated on (0,00). We assume henceforth that this Is the case.
Let R(t) denote the quantity on the right side of equation (9). If the function
m(.) driving the process of shot occurrences Is almost everywhere differentiable,
then the distribution of T has density R(t)r(t) and failure rate r(t), where

t

r(t) = m(t) - m(0)L(kH(t)) - fL(kH(u))m'(t-u)du. (10)
0

0%
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Now consider N(T), the number of Jolts leading to system failure. We

Indicate briefly how to obtain the generating function of N(T). We begin with
the joint distribution of T and N(T). Consider the difference

P{t-h < T : t , N(t)=n} = P{T>t-hN(t)=n}-P{T>tN(t)=n} (11)

Formally, If we divide equation (11) by h and let h tend to 0, we obtain the Joint
density of T and N(T). This limiting process can be rigorously Justified by
appealing to the absolute continuity of the distribution of T. We now proceed by
expanding the left-hand-side of (11) into more tractable quantities. Standard

- probabilistic arguments lead to:

P{T>t-h, N(t)-n} - P{T>t,N(t)=nl = g(t-h,n)-g(t,n) (12)

- -g(t-h,n)[1-P{N(t)-N(t-h)Oi}] + g(t-h,n-1)P{N(t)-N(t-h)=1j + o(h),

where g(t,n) = P(T>t , N(t)=nl. Dividing equation (12) through by h and
letting h-0 gives

P(Tedt , N(T)-n) = [g(t,n-1)-g(t,n)jm(t)dt - g'(t,n)dt. (13)

Now

g(t,n) = 1fL(kH(u))m(t-u)du]nexp[-M(t)]/n! , (14)
0

- and substituting (14) Into equation (13) yields

P(Tedt , N(T)-n) = g(t,n-1)r(t)dt. (15)

A simple Integration and summation now show that for 0 S 0 S 1,

* t

E[0N(T)] - feexp[efL(kH(u))m(t-u)du]exp[-M(t)]r(t)dt. (18)
0 0

Finally, differentiating (18) with respect to 0 and setting 0 - 1 gives

U E[N(T)] = 1 + f L(kH(u))m(t-u)du R(t)r(t)dt. (17)
0
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Other quantities of interest are the mean and variance of Y(t).
Differentiating the tranform (8) with respect to s and then setting s - 0, we
see that

t
E(Y(t)} = E(D} fkH(u)m(t-u)du, (18)

0

and If E{Y(t) Is finite,

t

Var(Y(t)} = E(D2 } f[kH(u)12 m(t-u)du.(19)
0

The most tractable circumstance occurs when m(-) Is a step function or

constant, In which case equation (10) reduces to

r(t) = m(t) - m(O)L(kH(t)). (20)

Since this case covers a multitude of possibilities, we assume henceforth that the
rate function driving the shot process Is either a step function or constant. To
preclude tedious nuisance, we assume that m(O) m-(O+) > 0. We now
consider some specific examples.

Example 1: Suppose that the Jolt magnitudes are constant and that the Jolt-
induced stress decays slowly. In particular, suppose that D - d and that

*h(u)=l/(l + u) for u ;- 0 . Then

r(t) M(t) - [M(0)f(1 + t)kd], (21)

R(t) - exp[-M(t)](l + t)m(o) (22)

if kd 1 ,and

R(t) = exp[-M(t)jexp[m(0){(1 + t) l - kd - 11/(1 - kd)] (23)

otherwise. If M(t)=mt, then (18) reduces to

R(t) = exp[-mt](1 + t) m . (24)

Example 2: Suppose that D has a geometric distribution; specifically,
suppose that P{ D n } qp n for n O,1,2,... where 0 < p <
Assume that stress decays slowly as In Example 1, and that k =I 1. Then

d
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r(t) - m(t) - m(O)q[(1 + t)(q + t)] (25)

and

R(t) = exp[m(O)qt - M(t)] ((q + t)Iq} m(O)qp. (2)

Example 3: Suppose there Is a delayed reaction to a jolt, followed by slow
decay; in particular, assume that h(v) = |n(1 + av)I(i + av) for vO, where
a is some positive parameter. Further, suppose that the distribution of D has a
heavy tall; In particular, assume the distribution or D has transform
exp[-b(2s) /2 ] for s ; 0 where b is some positive parameter. Putting
c = ba - 2 and k = 1 gives

r(t) = m(t)-m(O) [1/(1 + at)'], (27)

which Is very similar to (21). If also M(t) = mt and c 1 then

R(t) - exp[-mt](1 + at)m . (28)

Example 4: Suppose that shot-Induced stress decays at an exponential rate; In
particular, assume h(v) = exp[-avj for v--, where a Is some positive
parameter. Further, suppose that D has an exponential distribution with
parameter b. Then

r(t) - m(t) - m(0) (ab/(ab + k - kexp[-at)} (29)

and

R(t) - exp[{m(O)abt/(ab + k)} - M(t)].

{(ab + k - kexp[-atl) / ab} m(O)b/(ab+k) (30)

In particular, if M(t) - mt and k = 1, then

R(t) - exp[-mabt/(1 + ab)] ((1 + ab - exp[-at]yab}mb/(l + ab). (31)

In this last case, residual system stress X(t) has a limit distribution (as t - 00)
which Is gamma with location parameter b and shape parameter r/a; cf.
Bondesson [1]. This Is a remarkable result In that a gamma distribution with
arbitrary shape parameter arises In a physical model.
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S. A GAMMIA PROCESS DRIVING SYSTEM STRESS

Let {Z(u) , u":0} be a compound Polsson process with Jump-rate function
{m(u) , u20} and jump sizes distributed as D. Note that the series
representation for X(t) given by (1) truncates at N(t), the number of jolts up to
time t. Thus, X(t) admits the equivalent representation

t
X(t) - fh(t-u)Z(du) (32)

0

where the right side of (32) is a Rlemann-Stleltjes integral. This suggests
replacing the compound Polsson process Z(*) to drive system stress by some
other process which also has Independent and positive increments. In particular
let {Z*(u) , uZ0} be a gamma process (cf. [6]) for which

E{exp[-sZ*(u)]} = {b/(b+,)}u (33)

for all u , s 2 0 , where b Is some positive parameter. (The Increments of ZOO
are in fact stationary.) Now let

t
X'(t) fh(t-u)Z*(du) (34)

0

and assume that the residual system stress at time t Is expressed by the
Riemann-Stleltjes Integral on the right side of (34). Further, suppose that the
system failure time T Is the epoch of the first count In a Polsson process with
rate function {kX*(u) , uZ0}. If R*(t) - P{T* >t then

R*(t) = E{exp[-fkX*(u)duj} (35)
0

To compute the right side of (35), we first note that
t t

fX*(u)du = fH(t-u)Z (du), (38)
0 0

where H(.) is given by (5). If J is a positive Integer then

ln(E{exp{-k I H(t-(jt/J))[Z (jt/J)-Z ((j-1)t/J)]}R) - (37)

7,(t1J)ln~b/[b +kH(t-Utj/J)]}.
Jj1
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Letting O~ on both sides of (37) yields

t
R*(t) =exp~ffn~b/(b+kH(u))}du]. (38)

0

.9.
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